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Salmon represented a critical resource for prehistoric foragers
along the North Pacific Rim, and continue to be economically and
culturally important; however, the origins of salmon exploitation
remain unresolved. Here we report 11,500-y-old salmon associated
with a cooking hearth and human burials from the Upward Sun
River Site, near the modern extreme edge of salmon habitat in
central Alaska. This represents the earliest known human use of
salmon in North America. Ancient DNA analyses establish the
species as Oncorhynchus keta (chum salmon), and stable isotope
analyses indicate anadromy, suggesting that salmon runs were
established by at least the terminal Pleistocene. The early use of
this resource has important implications for Paleoindian land use,
economy, and expansions into northwest North America.
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Each year along the Pacific coast of North America, millions of
salmon migrate from the ocean to spawn and die in their

natal rivers and lakes; however, during the last Ice Age, many of
the rivers that today support salmon were blocked by glacial ice,
severely restricting salmon ranges (1). A potential glacial refugium
for salmon was Beringia, the mostly ice-free landmass that bridged
northeast Asia and Alaska (1–3). Evidence for such a refugium
comes from studies of present-day diversity and distributions of
Pacific salmon (1, 2), but there is little direct evidence of the an-
tiquity of salmon spawning runs in North America. Here we con-
firm the presence of an anadromous salmon species, Oncorhynchus
keta (chum salmon) through ancient DNA (aDNA) and stable
isotope analyses of fish remains at the Upward Sun River site lo-
cated deep in the interior of Alaska, about 50 km downstream from
the modern limit of major spawning areas (Fig. 1). These speci-
mens, dating to the terminal Pleistocene, represent the oldest ge-
netically confirmed Pacific salmon species in an archaeological
context in North America. These data are important for testing
competing models of subsistence strategies and diet breadths of
Paleoindian populations in the New World (4, 5), as well as for
understanding Beringian ecosystem biodiversity.
Oncorhynchus is a salmonid genus that includes several Pacific

salmon and Pacific trout species; some species of this genus occur
as both freshwater resident and anadromous forms, migrating from
the sea to freshwater to spawn (6). The spawning behavior of
anadromous Pacific salmon results in massive and predictable runs
in freshwater streams over a short period, making these fish a
potentially valuable human food resource (7). Salmon are also
ecologically important because they transport rich marine-derived
nutrients into relatively unproductive interior riparian areas (8).
Five species of Pacific salmon and one species of Pacific trout
presently occur in central Alaskan waters, including Chinook
(Oncorhynchus tshawytscha), coho (Oncorhynchus kisutch), chum
(O. keta), sockeye (Oncorhynchus nerka), pink salmon (Onco-
rhynchus gorbuscha), and rainbow/steelhead trout (Oncorhynchus
mykiss) (1).
Pleistocene-aged remains of Pacific salmon from North America

are extremely rare in both paleontological and archaeological

contexts. This scarcity is related in part to the spawning habitat of
most salmon species, leading to death in river gravels where re-
mains are unlikely to be preserved (9) and to the fragility of fish
skeletal elements and their small size (inhibiting recovery), resulting
in their underrepresentation in the archaeological record (10). Pa-
leontological specimens of Pacific salmon have been recovered from
middle Pleistocene sediments in the Skokomish Valley, Washington
(United States) (9), and from late Pleistocene sediments at Kam-
loops Lake, British Columbia (Canada) (11). Although the remains
from both of these locales were morphologically identified as
O. nerka, carbon stable isotope analysis of specimens fromKamloops
Lake suggests that the fish were likely the landlocked form of
O. nerka, known as kokanee (11). Other late Pleistocene paleonto-
logical fish remains assigned to Pacific salmon derive from two ad-
ditional sites in British Columbia, including Courtenay (Vancouver
Island) and Gaadu Din 1 cave (Haida Gwaii) (12, 13). Specimens
from the latter site were genetically identified as “salmon,” but the
details of the aDNA analysis were not reported (13).
The only report of Oncorhynchus remains from a Pleistocene-age

archaeological site in North America comes from Upward Sun
River, located adjacent to the Tanana River (a major tributary of
the Yukon River) in central Alaska (14) (see also SI Text) (Fig. 1).
Here, 308Oncorhynchus specimens were recovered from the central
hearth of a residential feature, also associated with a cremated
3-y-old child (15). A double infant burial with associated grave goods
was located directly below (40 cm) this hearth. Radiocarbon and
contextual data suggest near contemporaneity between the hearth
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and the burial pit, with a mean pooled age of 9,970 ± 30 B.P.
(11,600–11,270 cal B.P.); thus, these represent the oldest known
human remains in the North American Arctic/Subarctic (Fig. 2 and
SI Text). A total of 29 additional Oncorhynchus specimens were
found within the pit fill. The fish remains were mostly fragmentary
and over 90% were burned and calcined. The component and
burials are culturally affiliated with the Denali Complex, which was
widespread in Eastern Beringia from ∼12,700 cal B.P. to the early
Holocene (3, 16).
The fish vertebrae were morphologically identified as Onco-

rhynchus using a modern comparative collection based on their
large size, fenestration pattern, and characteristic shape (17) (Fig.
2). Based on overall size and occupation season, based on other
fauna, the vertebrae resembled O. keta (Fig. S1 and Table S1);
however, species-level identifications based on morphology remain
ambiguous without genetic confirmation (18, 19). Species distinc-
tions are critical to separate salmon from trout and other salmonids,
because although some other members of this family are anadro-
mous, they do not typically form the extensive and massive
spawning runs that make salmon such an exceptional resource
(6, 20). Additionally, salmon species differ in habitat requirements,
run timing and abundance, and body size and fat content, all of
which have implications for understanding past human land use and
subsistence strategies (18, 19, 21, 22). aDNA analysis provides more
accurate identifications of fish remains, and has recently been suc-
cessfully applied to fish assemblages from Holocene archaeological
sites in the Pacific Northwest of North America (18, 19, 23, 24).
Genetic identification cannot resolve questions about anadromy

because salmon life history pattern is variable. Most Pacific salmon
stocks are anadromous; however, natural or introduced freshwater
stocks also occur for all species except chum, and captive chum
have been reared to maturity in fresh water (25). Stable isotope
analysis is an appropriate technique for distinguishing between
anadromous and nonanadromous salmon because the isotope
ratios of carbon (δ13C) and nitrogen (δ15N) are typically elevated
in marine compared with freshwater food consumers (26). This
technique has been successfully applied to identify life history
patterns in modern salmonid stocks (27–30).

To address the questions of taxonomic identification and life
history of the Upward Sun River Oncorhynchus specimens, we
subjected two unburned vertebral specimens (58-18 and 58-30)
to aDNA analysis, one of which (58-18) was also subjected to
carbon and nitrogen stable isotope analysis (SI Text and Table
S1). An unsuccessful attempt was also made to analyze DNA
from a third specimen (H-5446), a nearly complete but calcined
vertebra. The three specimens shared the distinctive morpho-
logical and overall size characteristics of the larger number of
burned and fragmented Oncorhynchus specimens.

Results and Discussion
DNA was extracted from the specimens following established
methods (SI Text). The extracts for the unburned specimens were
successfully PCR-amplified and sequenced for a region of the
mitochondrial 12S gene that is useful for discriminating among
Pacific salmonids and other fishes (31) (SI Text). Repeated se-
quence analysis demonstrated the samples to beOncorhynchus keta
(chum salmon) (Table S2). Additionally, one sample (58-18) was
analyzed at an independent aDNA laboratory using discriminating
fragments of the d-loop and cytochrome b regions of the salmonid
mitochondrial genome (22), confirming the identification made
with 12S (SI Text, Figs. S2–S4, and Table S3). Thus, repeatable and
independent analyses of mitochondrial DNA (mtDNA) demon-
strate that both samples are chum salmon.
Stable isotope analysis of bone collagen extracted from one of

the confirmed O. keta vertebra produced δ13C and δ15N values of
−15.1‰ and 12.6‰, respectively (SI Text). These values are
consistent with previously reported isotope values for ancient and
modern salmon from Alaska, and are elevated over those for
ancient and modern freshwater fishes (Fig. 3 and Tables S4 and
S5). These data indicate that the Upward Sun River chum salmon
specimen was anadromous.
The confirmed presence of an anadromous Pacific salmon spe-

cies, O. keta, at the terminal Pleistocene Upward Sun River site
provides the earliest evidence for human use of salmon in North
America, and adds to our understanding of Paleoindian adapta-
tions. Previous reports of genetically identified Pacific salmon

Fig. 1. Location of Upward Sun River Site, course of the Tanana-Yukon
River and possible course across the Bering Shelf during lower sea level, and
modern chum salmon fall spawning limit along the Tanana River. Details are
provided in SI Text.

Fig. 2. Upward Sun River stratigraphy, chronology, and aDNA and stable
isotope bone samples. Details provided in SI Text and Table S1.
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remains from archaeological sites date to as old as ∼6610–5940
cal B.P. from Namu on the central coast of British Columbia
(23), and to as old as 9300–8200 cal B.P. for morphologically
identified salmon from the Dalles Roadcut site on the Columbia
River (32). Pacific salmon remains have not been previously
reported for a late Pleistocene-age site, and, indeed, fish remains of
any kind are rare in sites for this period in the Americas. In a broad
review of taxa exploited by early Paleoindians (33), only two sites
(Aubrey and Shawnee-Minisink) had evidence of fish (with no
further taxonomic identification) in strong association with
human occupation, though abundance values were low. Recently,
Erlandson et al. (34) reported 78 specimens (1.4% of total) of
various fish taxa (none are salmon) at three Paleoindian sites on
the Channel Islands, California.
In Beringia, there is additional evidence for fish exploitation,

particularly during the Younger Dryas (16). In central Alaska,
Broken Mammoth Cultural Zone 3 (∼12,080 cal B.P.) contained
28 salmonid specimens (possibly grayling) (35), and Mead Cultural
Zone 3 (∼11,990 cal B.P.) contained unidentified fish remains (16).
In Kamchatka (Russia), Ushki 1 Level 6 (∼12,160 cal BP) con-
tained an unspecified number of burned fish bones (possibly
salmon) within houses (36). The salmon data from Upward Sun
River reported here add an important component to Paleoindian
diet breadth, with implications for seasonal exploitation and pos-
sibly storage that is markedly different from multiseasonal exploi-
tation of freshwater fish.
Although Paleoindians are traditionally portrayed as specialist

big-game hunters, evidence from Upward Sun River and other
early sites in Beringia increasingly suggests a diversity of sub-
sistence strategies, which included hunting, gathering, and fishing.
Although the degree of reliance on salmon by early Beringians is

currently unresolved, historically in subarctic Alaska, salmon were
taken in great numbers in summer to early fall for drying and
storing through the winter (37). The extent of salmon storage
among early Beringians is also unknown, but chum are well suited
for preservation because of their low oil content relative to other
salmon species (23).
Our findings have important implications for the paleoecology

and human colonization of Beringia and the Americas. Of the 40
earliest known components in northwest North America (dating
between 14,000 and 11,500 cal B.P.) (16), 36 (90%) are located
in the interior and the majority (60%) are associated with large
interior river bottomlands, suggesting the importance of riverine
resources to early foragers. Our data show that at least by 11,500
cal B.P., salmon had established spawning runs in the deep in-
terior of eastern Beringia near their current limit of migration,
an upriver distance of over 1,400 km from the current mouth of
the Yukon, plus an additional ∼300 km of river on the exposed
gradually sloping Bering Sea shelf (38) (Fig. 1). The addition of
salmon to the early subsistence record further indicates that
interior eastern Beringia was a productive landscape in the ter-
minal Pleistocene, supporting a variety of large and small terres-
trial mammals, waterfowl, and other fish. This resource diversity
contrasts with the assumptions of very low resource availability in
inland ecosystems in debates about New World migration corri-
dors (39, 40).
Modern ocean foraging areas for chum salmon include the

Bering Sea and the subarctic North Pacific Ocean. Although
suitable salmon habitat was likely available in this region
throughout the Late Pleistocene, during intervals within glacial
periods habitat was probably suboptimal, and especially so near
coastal areas surrounding the Bering Sea and the northern Gulf
of Alaska (41, 42). Recent paleoceanographic data show that
conditions improved dramatically between ∼17,000 and 13,000
cal B.P., depending on indicator and location, in terms of
warming sea-surface temperatures, reduced cover of seasonal sea
ice, and increased primary productivity (41, 42). River migration
access and spawning habitat in the lower Yukon River basin
during the Late Pleistocene was probably not an impediment to
salmon, as it was not glaciated, even at maximum glacial extent
(38, 43). These observations suggest that ocean habitat and mi-
gration barriers to Yukon-Tanana salmon were not substantial
during the period of early human colonization. Given this, salmon
may have been an important resource to earlier Paleoindian
subsistence economies and may have played a role in the bio-
geographic expansions of humans into northwest North America.
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